skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fraser, Morgan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present ultraviolet, optical, and near-infrared photometric and optical spectroscopic observations of the luminous fast blue optical transient (LFBOT) CSS 161010:045834–081803 (CSS 161010). The transient was found in a low-redshift (z= 0.033) dwarf galaxy. The light curves of CSS 161010 are characterized by an extremely fast evolution and blue colors. TheV-band light curve shows that CSS 161010 reaches an absolute peak of M V max = 20.66 ± 0.06 mag in 3.8 days from the start of the outburst. After maximum, CSS 161010 follows a power-law decline ∝t−2.8±0.1in all optical bands. These photometric properties are comparable to those of well-observed LFBOTs such as AT 2018cow, AT 2020mrf, and AT 2020xnd. However, unlike these objects, the spectra of CSS 161010 show a remarkable transformation from a blue and featureless continuum to spectra dominated by very broad, entirely blueshifted hydrogen emission lines with velocities of up to 10% of the speed of light. The persistent blueshifted emission and the lack of any emission at the rest wavelength of CSS 161010 are unique features not seen in any transient before CSS 161010. The combined observational properties of CSS 161010 and itsM*∼ 108Mdwarf galaxy host favor the tidal disruption of a star by an intermediate-mass black hole as its origin. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract The CNIa0.02 project aims to collect a complete, nearby sample of Type Ia supernovae (SNe Ia) light curves, and the SNe are volume-limited with host-galaxy redshiftszhost< 0.02. The main scientific goal is to infer the distributions of key properties (e.g., the luminosity function) of local SNe Ia in a complete and unbiased fashion in order to study SN explosion physics. We spectroscopically classify any SN candidate detected by the All-Sky Automated Survey for Supernovae (ASAS-SN) that reaches a peak brightness <16.5 mag. Since ASAS-SN scans the full sky and does not target specific galaxies, our target selection is effectively unbiased by host-galaxy properties. We perform multiband photometric observations starting from the time of discovery. In the first data release (DR1), we present the optical light curves obtained for 247 SNe from our project (including 148 SNe in the complete sample), and we derive parameters such as the peak fluxes, Δm15, andsBV
    more » « less
  3. We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN 2017gmr from hours after discovery through the first 180 days. SN 2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ∼ 500 Re progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130 ± 0.026 Me of 56Ni are present, if the light curve is solely powered by radioactive decay, although the 56Ni mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of Hα and [O I] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta. 
    more » « less